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A B S T R A C T   

Demand planning (DP) and sales forecasting (SF) are two critical issues to achieve successful supply chain an-
alytics. Generally, DP refers to determining the aggregate demand for a common component or sub-assembly 
required by various finished products. In contrast, SF is conducted to estimate sales revenues of the firms. In 
the past, DP usually focused on optimizing resource allocation while SF is roughly based on historical data. In 
reality, DP and for the upstream motherboard and SF for the firm closely rely on the estimation of sales volumes 
of the downstream computer products. Meanwhile, the dynamic interactions between the main competitors 
significantly influences the performance of SF. To highlight the impacts of demand uncertainties and dynamic 
interactions, this research presents a novel framework to overcome difficulties: (1) demand uncertainties arising 
from seasonal variations and cyclic trends in computer products are captured, (2) DP and SF consider the change 
of product volatility, (3) the dynamic interactions between the MB and computer products are considered to elicit 
managerial insights. Experimental results show that the presented framework successfully achieves the above- 
mentioned goals and has potential to be generalized to other industrial components.   

1. Introduction 

Motherboard (MB) is a key component that mechanically fastens and 
electrically connects resistors, capacitors, inductors, processors, chip-
sets, and interface controllers. The name, “mother”, means that all 
components attached to printed circuit board form an interface to 
communicate and functionalize computer products, such as desktops, 
laptops, servers, printers, etc. On the one hand, demand volatility and 
seasonal variations arising from downstream products (vertical re-
lationships) results in difficulties in conducting effective demand plan-
ning (DP) and sales forecasting (SF) for upstream component 
manufacturers (Shapiro, 2006; Cho & Lee, 2013; Saleh, Rabie, & Abo-Al- 
Ez, 2016). On the other hand, technology competition or complemen-
tary dynamics between downstream products (horizontal relationships) 
also leads to obstacles in achieving successful DP and SF (Hood, Bermon, 
& Barahon, 2003; Jacobs & Chase, 2015; Tsai, Hsu, & Balachandran, 
2013). Demand uncertainties composed of cyclic variations mixed with 
trends tend to rise and fall within specific time durations. This phe-
nomenon can be partially explained by the so-called “bullwhip effect”: a 
small variation in the downstream viewed as a ripple can be amplified as 
a big variation in the upstream (Miller & Park, 2005; Addo-Tenkorang & 

Helo, 2016; Stevenson, 2015). 
As a consequence, a systematic way to capture both vertical and 

horizontal relationships that can link DP into SF is necessary to achieve 
successful supply chain management (Guidolin, Guseo, & Mortarino, 
2019). Specifically, demand uncertainty arising from downstream 
computer products can be roughly attributed to several reasons (Holt, 
2004; Huang, Chang, & Chou, 2008; Ziser, Dong, & Wong, 2012; Wang 
& Chien, 2016; Aryal, Liao, Nattuthurai, & Li, 2018): (1) smartphones 
and tablets have more or less replaced the conventional desktops and 
laptops. Meanwhile, smartphones have also killed low-end digital 
cameras (demand-pull transition), (2) artificial intelligence, big data, 
and cloud computing have significantly increased the requirements for 
servers and high-end graphics cards (technology-push transition), (3) 
smart cars are expected to boost automotive applications of MB (new 
applications of existing technologies), (4) internet of things (IOT) and 
cyber-physical systems (CPS) have dramatically brought about a rising 
wave of smart-home appliances (extensions of existing technologies). 
Hence, this research accommodates both vertical and horizontal re-
lationships to incorporate them into DP and SF (Wang & Chen, 2019). 

To respond to demand uncertainties and product volatility, sensi-
tivity analyses with respect to computer products (desktop, laptop, 
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server, printer) and MB can help firms better estimate its production 
capacity and sales revenues. For instance, a manager needs to know the 
impact on the firm if a computer product is expected to grow or decline 
by 10%. To conduct data-driven decision making, DP and SF for the 
upstream components must be linked together and related to the 
downstream products. Although numerous quantitative techniques have 
been proposed (Maia & Carvalho, 2011; Saleh et al., 2016; Zhong, 
Newman, Huang, & Lan, 2016; Al-Musaylh, Deo, Adamowski, & Li, 
2018), they have the following drawbacks: 

• Mathematical programming usually handles internal resource con-
straints to determine the optimal capacity without considering 
external market demand,  

• Regression considers the predictors to estimate the outcome but 
incapable of tackling seasonal effects as well as identifying the time- 
lags between them,  

• Time-series can capture “time-lags” between the predictors and the 
outcome but it cannot accommodate the dynamic interactions to 
reveal managerial insights. 

Consequently, a conceptual framework shown in Fig. 1 is presented 
to highlight the impacts of computer products and dynamic interactions 
on MB manufacturers. In DP, global sales of computer products drive the 
demand for MB. In SF, the vertical relationships between the MB and 
computer products and the horizontal relationships among MB manu-
facturers concurrently estimate financial performances. The rest of the 
study is structured as follows. Section 2 briefly reviews DP and SF in 
supply-chain analytics. Section 3 details the proposed framework. 
Experimental results are justified in Section 4. Discussions and research 
limitations are described in Section 5. Conclusions and future work are 
shown in Section 6. 

2. Literature review on supply chain analytics 

Business analytics has been incorporated into supply chain man-
agement to form the paradigm of supply chain analytics (SCA). In the 
perspective of SCA (Trkman, McCormack, Oliveira, & Ladeira, 2010; 
Zhong et al., 2016; Aryal et al., 2018), this research aims at linking two 
critical issues: demand planning (DP) and sales forecasting (SF). To 
conduct aggregate DP, an operation manager needs to plan strategic 
actions a priori and respond to the optimistic or pessimistic sales vol-
umes of downstream products. In contrast, to conduct precise SF, a 
financial manager needs to take both vertical relationships (between the 
upstream component and downstream products) and horizontal re-
lationships (between firms) into account (Shapiro, 2006). Therefore, DP 

and SF for the upstream component must be linked into the prediction of 
the downstream products although demand is volatile and uncertain 
(Huang et al., 2008; Wu & Chuang, 2010; Wang & Chen, 2019). 

2.1. Operation and demand planning (DP) 

Operation and demand planning is a well-known concept to set up a 
time phase to align production orders with customer deliveries, taking 
into account material availability, resource availability and knowledge 
of future demand (Bertrand & Rutten, 1999). Generally, it consists of the 
following steps: (1) Determining suitable product mix and capacity load 
to meet customer requirements. (2) Preparing the required resources to 
match the preset production level. (3) Delivering production orders and 
scheduling the activities in the manufacturing facility and plants. 
Managers often conduct planning in terms of the available resources 
required to produce finished goods (Stevenson, 2015). Unfortunately, 
unexpected demand uncertainties or seasonal variations usually form 
obstacles in achieving successful DP. Capacity strategies, such as 
expansion, contraction, and wait-and-see, need to be flexibly adjusted 
(Miller & Park, 2005; Chen, Chen, & Lu, 2013; Chen, Chen, Pratama, & 
Tu, 2018; Wu & Chuang, 2010, 2012). An operation manager needs to 
carefully think about: “What kind of capacity is suggested?” and “How 
much capacity should be prepared?” Insufficient capacity results in lost 
sales while excessive capacity leads to sunk cost due to unfulfilled 
orders. 

In practice, decision-making on capacity allocation can be treated as 
a mathematical-programming problem, including real options (Hood 
et al., 2003; Huang et al., 2008), dynamic programming (Wu & Chuang, 
2012), mixed integer programming (Chen et al., 2013), and meta- 
heuristics (Chen et al., 2018). Clearly, most of the aforementioned 
studies focused on internal resource constraints to determine the 
optimal product mixes with respect to different technology generations 
and manufacturing sites. In contrast, the impacts of external markets, 
demand uncertainties, and the relationships between the upstream 
components and the downstream products are rarely addressed. To 
conduct data-driven decision making (Sahay & Ranjan, 2008; Cho & 
Lee, 2013; Lau, Ho, & Zhao, 2013; Wang, Cheng, & Deng, 2018), stra-
tegic DP for upstream components closely relies on the prediction of 
downstream products. 

2.2. Sales and sales forecasting (SF) 

Forecasting can assist a firm in achieving better inventory control 
and financial estimation. Typical forecasting methods are either quali-
tative or quantitative (Lau et al., 2013; Jacobs & Chase, 2015). 

Fig. 1. Conceptual research framework.  
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Qualitative schemes include panel consensus, Delphi method, historical 
analogy, and market research. Sales managers, financial managers, and 
production managers meet together, discuss, and communicate with 
each other to reach a consensus. Obviously, qualitative schemes are too 
reliant on expert opinions and lack evidence to support decision making. 
In contrast, quantitative schemes including regression methods and 
time-series models are systematic, reliable and persuasive (Weron, 
2014; Stevenson, 2015; Guidolin et al., 2019). Mathematically, regres-
sion methods can identify the causalities between the predictors and the 
dependent outcome whereas time-series predicting future values of the 
outcome based on its historical data can accommodate seasonal varia-
tions or linear trends (Wang et al., 2018). 

To highlight research contribution, Table 1 briefly compares this 
research to the past studies. Apparently, most past studies treated DP 
and SF independently and most of them have the following drawbacks: 
(1) in demand planning, mathematical programming has been adopted 
to optimize resource allocation without considering external environ-
ments, such as associated products and main competitors. Meanwhile, 
demand volatility and seasonal variations are not effectively captured, 
(2) in sales forecasting, time-series is constructed but only based on 
historical data. Time-lags between the predictors and the outcome are 
failed to be included. Similar to demand planning, the impacts of 
downstream computer products and dynamic interactions between main 
competitors are rarely considered in sales forecasting, and (3) although 
very few studies address the impacts of dynamic interactions, only LV 
model is considered without benchmarking. In practice, it’s difficult for 
managers to successfully conduct sensitivity analyses without capturing 
the relationships between the products and the component (MB) and 
between the firm and its competitors. 

To facilitate research gaps, this research adopts hybrid models 
because of the following reasons (Box, Jenkins, & Reinsel, 2005; Al- 
Musaylh et al., 2018): (1) regression methods can neither capture sea-
sonal variations in computer products nor consider time-lags between 
the downstream products and the upstream components and (2) time- 

series models can incorporate demand uncertainties arising from com-
puter products but fail to capture dynamic interactions between the 
products and the component. In practice, eliciting the dynamic in-
teractions can help managers conduct sensitivity analyses to quantita-
tively estimate the impacts of growing or declining sales volumes of a 
product on the upstream component and competing firms. 

3. Proposed techniques 

Time-series models and ensemble learning are the two common ap-
proaches to conduct quantitative forecasting. For clarity, Table 2 com-
pares various schemes in terms of relative strengths or weaknesses. 
Autoregressive integrated moving averaging (ARIMA) has lots of supe-
riorities, such as capturing seasonal variations and accommodating time- 
lags between the predictors and the outcome. By contrast, ensemble 
learning, such as random forest (RF) and gradient boosting (GB), is good 
at prioritizing the degree of importance of the predictors and measuring 
the impacts of shifting a specific predictor on the outcome. To measure 
dynamic interactions for conducting collaborative forecasting, vector 
autoregression (VAR) and Lotka-Volterra models (LV) demonstrate their 
superiority. In this study, ANN (artificial neural network) and SVM 
(support vector machine) are not considered because ANN has so-called 
black box characteristics and SVM is too tedious to solve mathematical 
programming (Ziser et al., 2012; Lau et al., 2013; Wang et al., 2018; 
Wang & Chen, 2019). 

Thus, Fig. 2 details the presented framework as follows: (1) Global 
shipments for upstream MB and downstream computer products 
(desktop, laptop, and server) are collected. (2) Time-series using ARIMA 
and ensemble learning based on RF and GB are applied to conduct de-
mand planning (DP) and sales forecasting (SF) for MB manufacturers. 
(3) VAR and LV model are used to elicit the dynamic interactions be-
tween MB and computer products and generate managerial insights 
between MB manufacturers. For clarity, Fig. 3 shows a data-flow plot 
indicating the input variables and the outcome for various techniques. 
For ensemble learning and time-series, the causal relationships between 
the predictors (shipments of computer products) and the outcome 
(shipments of MB or sales revenues of MB manufacturers) are identified 
to conduct DP and SF. Similarly, LV models and VAR are responsible for 
accommodating dynamic interactions to generate managerial insights. 

Specifically, the root mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE) are used to measure 
forecasting errors (Weron, 2014; Wang & Chuang, 2016; Tsai, 2017; Al- 
Musaylh et al., 2018): 

RMSE =
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where n is the number of samples and ei = Fi − yi is an error defined as 
the predicted value (Fi) minus the real data (yi). 

Table 1 
Overall comparison between this research and the past studies.   

Sales/financial 
forecasting 

Demand/operations 
planning 

Dynamic 
interaction 

This research Dynamic ARIMA ensemble learning 
(RF, GB) 

VAR, LV 

Hood et al. 
(2003)  

stochastic 
programming  

Miller and Park 
(2005)  

real option  

Wu and Chuang 
(2010)  

dynamic 
programming  

Ziser et al. 
(2012) 

BPN, SVR   

Chen et al. 
(2013)  

MILP  

Lau et al. (2013) BPN, MDL   
Chen et al. 

(2018)  
ant colony 
optimization  

Tsai (2013)   LV 
Tsai et al. (2013)   LV 
Tsai (2017)   LV 
Huang et al. 

(2008) 
simulation real option  

Wu and Chuang 
(2012)  

stochastic 
programming  

Al-Musaylh et al. 
(2018) 

MARS, SVR, 
ARIMA   

Wang and Chen 
(2019) 

ARIMA, MARS, 
SVR  

VAR 

% ARIMA: autoregressive integrated moving average, BPN: backpropagation 
neural network, GB: gradient boosting, LV: Lotka–Volterra, MARS: multivariate 
adaptive regression splines, MDL: minimum description length, MILP: mixed 
integer linear programming, RF: random forest, SVR: support vector regression, 
VAR: vector autoregression. 

Table 2 
Overall comparison between different forecasting techniques.   

ARIMA VAR RF GB LV 

Capturing seasonal variations * *    
Extracting key predictors   * *  
Estimation of confidence intervals * *    
Accommodation of time-lags * *   * 
Collaborative forecasting  *   * 
Sensitivity analysis *  * *   
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3.1. Time-series 

Autoregressive integrated moving average (ARIMA) is selected to 
construct time-series models for conducting DF. Demand for down-
stream products or upstream components tend to rise and fall within a 
specified time duration owing to seasonal variations and uncertainties. 
Thus, ARIMA is appropriate to take these cyclic components in to ac-
count. ARIMA has generally two types: self ARIMA and dynamic ARIMA. 
Self ARIMA only considers the historical values of the outcome to predict 
its future values. In contrast, dynamic ARIMA concurrently considers the 
historical values of the predictors and the outcome to predict future 
values of the outcome. For convenience, a general ARIMA is mathe-
matically formularized as (Box et al., 2005): 

φ(B)(1 - B)dzt = θ(B)at, (4)  

φ(B) = φ0 − φ1B − φ2B2 − ⋯φpBp, (5)  

θ(B) = θ0 − θ1B − θ2B2 − ⋯θqBq, (6)  

where φ(B) is called an autoregressive operator with an order p, θ(B) is 
called a moving average operator with an order q, and B is a backward- 
shift operator. However, the stationary series may contain seasonal 
(cyclic) components. In addition to the three common parameters, (p, d, 
q), seasonal parameters, (P, D, Q), are added to generate a more general 
form called seasonal ARIMA (Cho & Lee, 2013; Wang et al., 2018): 

Φ(Bs)φ(B)(1 - B)d
(1 - Bs)

Dzt = Θ(B)θ(Bs)at, (7)  

Φ(Bs) = Φ0 − Φ1Bs − Φ2B2s − ⋯ΦpBps, (8)  

Θ(Bs) = Θ0 − Θ1Bs − Θ2B2s − ⋯ΘqBqs, (9)  

where Φ(Bs) is a seasonal autoregressive operator (order p), Θ(Bs) is a 
seasonal moving-average operator (order q), and Bsis a backward-shift 
operator. 

Vector autoregression (VAR) does not strictly separate all of the 
variables into the predictors or the outcome. It treats all variables as the 
factors within a dynamic system so they can be mixed to predict each 
other. In reality, many possible combinations of the predictors can be 
considered. To reduce computational complexity, Granger causality test 
is required to determine whether the predictor is significant or not 
(Granger, 1969). For simplicity, a bivariate system with VAR (2) is 
formulated as follows: 
[

Y1t
Y2t

]

=

[
c1
c2

]

+

[
a11 a12
a21 a22

][
Y1,t− 1
Y2,t− 1

]

+

[
b11 b12
b21 b22

][
Y1,t− 2
Y2,t− 2

]

+

[
ε1t
ε2t

]

,

(10)  

where Y1 and Y2 are mutually estimated, an order two (maximal time- 
lag) is assumed without loss of generality, ci is the intercept, aij is the 
slope of the previous period, bij is the slope of the last two period, and εit 

represents a residual. If a multivariate VAR with order p is considered, a 
matrix form should be used to generalize Eq. (10). 

Fig. 2. Proposed methodological techniques.  

Fig. 3. Visualization of data-flow in demand planning and sales forecasting.  
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3.2. Ensemble learning 

Ensemble learning algorithms, such as random forest (RF) and 
gradient boosting (GB), are usually composed of decision trees. Each 
tree is built based on an independent set of random vectors that are 
generated from a fixed probability distribution (Breiman, 1997). 
Ensemble method constructs a set of base models from different training 
data to conduct aggregate decision making. For a classification problem, 
the result refers to majority voting among various classification trees. 
For a regression problem, the result refers to an average of predictive 
results of various regression trees (Tan, Steinbach, & Kumar, 2010). RF, 
as indicated by its name, randomly selects the combinations of pre-
dictors and training samples. For clarity, assume an ensemble system 
consisting of 30 weak classifiers, each of which has a high error rate, 
ε = 0.35. Using the binominal principle, the minimal error rate of 
ensemble learning can be theoretically reduced to 

e =
∑30

i=16

(
30
i

)

εi(1 − ε)30− i
= 0.03. In simple words, more than half 

base machines are wrong, the ensemble system can make incorrect 
prediction. In general, its performance is much better than a single de-
cision tree. 

GB originated from Breiman (1997) and Friedman (1999) allows 
optimization of an arbitrary differentiable loss function (gradient 
descent and boosting). Gradient boosting implies using “gradient 
descent” with plugging a loss function, (y − f(x))2/2. An easy way to 
explain GB is least-square regression, where the goal is to train a model 
to generate predictive values, f(x) = ŷ, by minimizing the mean squared 
error, (ŷ − y)2

, where y and ŷ mean actual values and fitted values. 
Suppose at iteration m, the procedure of GB is described as: 
fm+1(x) = fm(x) + h(x) = y, in which h function is in a residual form 
(h(x) = y − fm(x)). Mathematically, GB seeks an optimal approximation, 
f̂ (x), in the form of the weighted sum of residual functions: 

f̂ (x) =
∑n

i=1
wihi(x) + w0 (11)  

where n is the number of samples, wi and w0 are the fitted slopes and the 
intercept to minimize the loss function h(x) and hi(x)comes from indi-
vidual weak base models. 

3.3. Lotka-Volterra (LV) model 

Lotka-Volterra (LV) model can be used to describe the dynamic in-
teractions between the products. Based on the logistic equation, the LV 
model can characterize the relationships between two interactive firms, 
products, and brands. Two differential equations are illustrated as fol-
lows (Tsai, 2013, 2017; Tsai et al., 2013): 

dx1

dt
= a1x1 − b1x1

2 − c1x1x2, (12)  

dx2

dt
= a2x2 − b2x2

2 − c2x1x2, (13)  

where xi can be modeled by adopting users, shipments, revenues, etc., ai 
denotes the ability of itself, bi refers to the limitation of the object during 
market expansion, ci describes the interaction between the object and its 
rival. In equilibriums, the differential values in Eqs. (12) and (13) are 
zeros. Thus, the two objects can be mutually estimated and predicted as: 
x1 = (a1 − c1x2)/b1 and x2 = (a2 − c2x1)/b2. To use discrete data, dif-
ferential equations need to be transformed into difference equations: 

x1(t + 1) =
α1x1(t)

1 + β1x1(t)+γ1x2(t)
, (14)  

x2(t + 1) =
α2x2(t)

1 + β2x2(t)+γ2x1(t)
, (15)  

where ai = lnαi, bi = βilnαi/(αi − 1), and ci = γilnαi/(αi − 1) are used to 
estimate three important parameters required in constructing LV 
models. The original LV model can be generalized to include more en-
tities at a time. For clarity, managerial insights regarding the parameters 
in LV models are described in Table 3. The relationships between two 
interactive objects (products, brands, technologies) can be one of the six 
types: pure competition (mutually harmful), predator–prey (one bene-
fits but the other is harmed), mutualism (mutually beneficial), amens-
alism (one suffers but the other is unaffected), commensalism (one 
benefits but the other is unaffected), and neutralism (mutually inde-
pendent). Apparently, LV model can well capture dynamic relationships 
between the related objects and incorporate them into regression models 
to generate managerial implications. 

4. Experimental results 

Initially, global shipments for the upstream MB and the downstream 
computer products are sampled quarterly from 2009/1Q to 2019/4Q. 
Data samples are collected from mic websites (https://mic.iii.org.tw/a 
isp/ReportS.aspx?id=CDOC20200429003) and digitimes (https: 
//www.digitimes.com.tw/tech/rpt/datacharts.asp?CnlID= 3). In 
Fig. 4, it is interesting to observe desktops, laptops, and MB are declining 
but servers are growing (owing to strong requirements for data centers 
and high-speed computation). However, the growth of servers still fails 
to stimulate the sales of MB. Meanwhile, these computer products have 
obvious seasonal variations (Holt, 2004; Miller & Park, 2005). For 
visualization, all the data samples are normalized to be between zero 
and unity (X-Min/(Max-Min)). Additionally, the “time-lag” phenomenon 
is clearly observed: sales volumes of desktops, and laptops decline 
earlier than the shipments of MB. This finding supports global shipments 
(sales estimation) of computer products can be treated as good leading 
indicators to predict demand for MB. 

4.1. Demand planning (DP) for the motherboard (MB) 

Referring to Fig. 1 again, this research highlights a critical concept: 
computer products substantially drive the demand for MB. Thus, to 
conduct DP, computer products are treated as the leading predictors 
while MB is treated as the lagging outcome. Without loss of generality, 
time-series and ensemble-learning are concurrently adopted for bench-
marking. In Table 4, time-series models include self ARIMA (using his-
torical values of MB) and dynamic ARIMA (considering computer 
products). Not surprisingly, dynamic ARIMA slightly performs better 
than self ARIMA. Based on Akaike information criterion (Akaike, 1974), 
significant time-lags between computer products and MB are identified 
as 0, 3, and 4 (measured in quarters), respectively for desktop, laptop, 
and server. Ensemble-learning schemes, such as RF and GB, are used for 
benchmarking. Finally, VAR and LV model are adopted to accommodate 
dynamic interactions between computer products and the MB. 

To conduct DP for MB, GB (1%) surprisingly outperforms the other 

Table 3 
Relationship description according to the signs of interaction parameters.  

c1 
c2 

Relationship Explanation 

+, 
+

Pure 
competition 

Both suffer from each other’s existence 

+, 
−

Predator–Prey Entity 2 serves as direct food to entity 1 

− , 
−

Mutualism The case of symbiosis (win–win) 

+, 0 Amensalism Entity 1 suffers from the existence of entity 2, who is 
impervious to what is happening 

− , 0 Commensalism Entity 1 benefits from the existence of entity 2, who 
nevertheless remains unaffected 

0, 0 Neutralism No interaction between each other  
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methods in Table 4. All the MAPEs are between 1% and 5%. That means, 
our research concept is strongly support: DP for the upstream MB can be 
based on the estimation of the downstream computer products. As we 
know, VAR treats all of the variables as a system rather than dividing 
them into either the predictors or the outcome. Thus, VAR can concur-
rently predict global shipments of computer products and MB. Despite 
VAR performs better than LV model, it cannot elicit the relationships 
between computer products and MB. Therefore, LV model is constructed 
to assist managers in generating managerial insights. In practice, in-
dustrial practitioners can collaboratively adopt various ways to conduct 
DP for MB and achieve multiple goals. 

4.2. Sales forecasting (SF) for MB manufacturers 

Similar to demand planning, sales forecasting also considers three 
approaches: time series, ensemble learning, and dynamic interaction. In 
DP, only computer products are the predictors. In contrast, sales vol-
umes of computer products and MB are used as the predictors in SF. 
Meanwhile, to accommodate the impacts of dynamic interactions, the 
three firms, Asus, Msi, and Gigabyte, are selected to judge the validity of 
this research. Notice that these firms are not only the top three MB 
manufacturers (Statista) but also worldwide brands in computer prod-
ucts. In terms of sales revenues, Fig. 5 shows that Msi and Gigabyte seem 
to be more similar to each other than Asus. In Table 5, it is found that RF, 
dynamic ARIMA, and GB respectively performs the best in Asus (4.7%), 
Msi (4.2%), and Gigabyte (4.2%). In SF, dynamic ARIMA and ensemble 
learning (RF and GB) perform slightly better than VAR and LV model 
because they consider different predictors. Dynamic ARIMA and 
ensemble learning consider computer products (desktop, laptop, server) 
and MB as the predictors while VAR and LV model use sales revenues of 
main competitors as the predictors. Thus, computer products and MB are 
selected as a basis to conduct sensitivity analyses. 

In simple words, a manager needs to estimate the impact of product 
volatility (a specific product is expected to grow or decline about 10%) 
on sales revenues of the firms. In Table 6, sensitivity analyses with 
respect to three computer products and MB are measured in the per-
centage ratios: the absolute difference divided by the mean average. In 
brief, sales revenues of a MB manufacturer can grow or decline arising 
from any increasing or decreasing sales of computer products or MB. 
Quantitatively, the degree of change of sales revenues for a specific firm 
(Asus, Msi, Gigabyte) is due to increasing (decreasing) sales volume of a 

predictor (desktop, laptop, server, MB) by 10%. Very interestingly, 
servers, MB, and laptops respectively contribute the most to sales rev-
enues of Asus, Msi, and Gigabyte. In addition, desktops and MB influ-
ence Msi and gigabyte more than Asus because Asus is very diverse in its 
product lines (including smartphones and tablets). In recent years, these 
three firms continually developed high-performance gaming laptops and 
graphics cards. In future work, these niche products need to be further 
included. Another famous company, Acer, is not included because it 
focuses on computer products without manufacturing MB. For opera-
tions managers, sensitivity analysis can provide decision supports in 
product-family based portfolio analyses (Otten, Spruit, & Helms, 2015; 
Wang, 2019). For instance, it gives a guideline to set production ca-
pacities, prepare inventories (finished goods and industrial compo-
nents), and optimize resource allocation between different product 
lines. For financial or sales managers, sensitivity analyses can provide a 
quantitative basis to estimate the impacts of product volatility on sales 
revenues. They can think the way to optimize product portfolios 
depending on profitability (selling price minus manufacturing cost) and 
the estimation of sale volumes. 

5. Discussions 

To reveal managerial implications, LV models are applied to analyze 
the dynamic interactions between computer products and MB compo-
nent (Table 7) and MB manufacturers (Table 8). Referring to Table 4 
(demand planning) and Table 5 (sales forecasting), pairwise regression 
and collaborative forecasting are mutually constructed. Here, the pre-
dictor means the independent variable while the target means the 
outcome. The relationships between computer products and MB are very 
interesting and diverse. For instance, the “commensalism” relationship 
between two computer products (desktop and laptop) and MB means 
sales of desktops or laptops positively benefits demand for MB. How-
ever, the relationship between the server and MB, “neutralism”, implies 
servers may not be a significant indicator to predict global shipments of 
MB. Although the performances of LV models are slightly worse than 
time-series or ensemble learning (see Table 4 again), they can concur-
rently capture the dynamic interactions between the MB and computer 
products and reveal managerial implications. 

In SF, Table 8 demonstrates the relationships between the three 
representative firms. It is interesting to find small-scaled firms, such as 

Fig. 4. Global shipments of MB and computer products (normalized scale).  

Table 4 
Demand planning for MB (global shipments in thousand units).   

Time series Ensemble learning Dynamic interaction 

ARIMA Dynamic RF GB VAR LV 

RMSE  1482.9  1441.74  1182.81  496.57  1167.36  1868.9 
MAE  1136.21  1055.04  955.87  344.27  881.77  1457.24 
MAPE  0.034  0.032  0.03  0.01  0.027  0.045  

Fig. 5. Sales revenues for MB manufacturers (normalized scale).  
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Msi and Gigabyte, seem to be independent with each other although 
Fig. 5 displays similar patterns in sales revenues. Very interestingly, the 
relationship between Msi or Gigabyte and Asus is “predator–prey”. It 
means both Msi and Gigabyte gradually penetrate Asus’s market share. 
In other words, the growth of sales revenues in Msi and Gigabyte is 
achieved at the expense of the decline of Asus’s sales revenue. Regard-
less of the entire market is either a growing pie or a fixed pie, apparently, 
Msi and Gigabyte are harmful to Asus’s market shares. Although LV 
models can help managers elicit the relationships between the firm and 
its main competitors, it is based on aggregate sales revenues. To further 
understand the details, the degree of interaction between the firms 
should be measured in terms of specific product categories. 

In this research, two important issues are particularly highlighted: 
demand planning for motherboard and sales forecasting for MB manu-
facturers. More importantly, the impacts of downstream computer 
products and dynamic interactions between main competitors are 
captured and incorporated into the presented framework (see Fig. 1 
again). This research cannot be without limitations. First, only desktops, 
laptops, and servers are considered to forecast MB. Other products, such 

as smartphones or tablets, can be included because they can partially 
replace computer products and thus indirectly influence global ship-
ments of MB. Second, this research focuses on demand planning and 
sales forecasting. Internal resource constraints (equipment, materials, 
labor hours, etc.) should be integrated with external markets to conduct 
collaborative decision-making. Finally, despite time-series can better 
capture seasonal variations, it cannot accommodate different time-lags 
between a specific predictor and the outcome (a leading predictor is 
ahead of the outcome). A well-known deep-learning module, recurrent 
neural network (RNN), is flexible to accommodate different time-lags, 
however, it requires sufficient data samples to optimize network- 
topology parameters. 

6. Conclusions 

Demand planning (DP) and sales forecasting (SF) are classical, yet, 
critical to achieve successful supply chain management. In the past, 
qualitative schemes (Delphi method, market research, panel consensus, 
historical analogy) and quantitative techniques (mathematical pro-
gramming, machine learning, time-series) have been proposed to 
address these issues. Qualitative schemes are mostly reliant on experts’ 
subjective assessments. Although quantitative methods are more 
convincing, each method has its limitations. Mathematical program-
ming focuses on internal resource constraints but rarely takes external 
demand and product volatility into account. Machine-learning methods 
can prioritize the degree of importance of the predictors but they are 
deficient in capturing the time-lags between the predictors and the 
outcome (Al-Musaylh et al., 2018; Wang et al., 2018). Time-series can 
capture seasonal effects and accommodate time lags but fail to elicit 
dynamic interactions between the predictors and the outcome. 

To sum up, the presented framework demonstrates the following 
strengths:  

• DP and SF for upstream MB is based on the prediction of downstream 
computer products. The effects of seasonal variations and time lags 
are successfully captured,  

• Sensitivity analyses are conducted to help managers quantitatively 
estimate the impact of a growing or declining product on sales rev-
enues of a firm to form a basis of product-mix portfolio management,  

• Dynamic interactions including vertical relationships between the 
MB and computer products and horizontal relationships between the 
firms, are elicited to reveal managerial insights. 

To achieve better product portfolio management and resource allo-
cation, an operation manager needs to take demand uncertainty and 
product volatility into account: What happens on the firm if sales volume of 
a downstream product or an upstream component has increased or decreased 
by 10%? What product should be firstly expanded or contracted? How can 
we enhance profitability in face of dynamically changing sales volumes? The 
presented framework systematically guides the firm to coordinate de-
mand planning with sales forecasting. More importantly, the presented 
framework is promising to be generalized to other industrial compo-
nents, such as panel display, memory chips, graphics cards, and 
microprocessors. 

Table 5 
Sales forecasting for MB manufacturers (sales revenues in million $TWD).   

Asus Msi Gigabyte 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

ARIMA  7.984  6.371  0.067  2.155  1.712  0.075  1.467  1.174  0.091 
Dynamic  6.268  5.072  0.053  1.135  0.929  0.042  0.918  0.702  0.054 
RF  6.134  4.563  0.047  1.452  1.04  0.047  0.967  0.708  0.054 
GB  6.47  4.389  0.048  1.518  1.08  0.051  0.705  0.536  0.042 
VAR  6.76  5.689  0.06  1.796  1.418  0.062  1.512  1.175  0.09 
LV  9.141  7.174  0.078  2.702  2.135  0.099  1.839  1.370  0.107  

Table 6 
Sensitivity analyses for MB manufacturers (%).   

Desktop Laptop Server MB 

Asus  2.7  2.52  15.96  4.72 
Msi  8.47  4.13  4.09  8.59 
Gigabyte  6.19  11.04  0.42  6.72  

Table 7 
Dynamic interactions between MB and computer products using pairwise 
analyses.  

Target Predictor Parameters (α,β, γ)  Relationship 

Desktop MB (1.242***, 7.6e− 7, 6.121e− 6) Commensalism 
MB Desktop (8.914e− 1***, 1.427e− 5***, 

− 7.076e− 6***) 
Laptop MB (1.571***, 1.059e− 5, 3.525e− 6) Commensalism 
MB Laptop (8.667e− 1***, 1.075e− 5***, 

− 1.061e− 5***) 
Server MB (1.769**, 4.467e− 5, 1.669e− 5) Neutralism 
MB Server (1.612**, 8.974e− 6, 1.427e− 4) 

%Significance level used: ***<0.001, **<0.01, *<0.05, and <0.1. 

Table 8 
Dynamic interactions among MB manufacturers using pairwise analyses.  

Target Predictor Parameters (α,β, γ)  Relationship 

Asus Msi (3.609**, 1.171e− 2*, 6.058e− 2*) Predator–Prey 
Msi Asus (9.499e− 1***, 7.840e− 3, 

− 2.657e− 3***) 
Asus Gigabyte (3.045**, 8.876e− 3, 8.317e− 2.) Predator–Prey 
Gigabyte Asus (1.750***, 8.335e− 2*, − 3.806e− 3*) 
Msi Gigabyte (1.204***, 4.502e− 3, 3.972e− 3) Neutralism 
Gigabyte Msi (1.952***, 1.117e− 1*, − 2.469e− 2) 

%Significance level used: ***<0.001, **<0.001, *<0.05, and <0.1. 
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